
GPU-ACCELERATED LOCAL TONE-MAPPING FOR HIGH DYNAMIC RANGE IMAGES

Qiyuan Tian†, Jiang Duan††, Guoping Qiu†††

†Department of Electrical Engineering, Stanford University
††School of Economic Information Engineering, Southwestern University of Finance and Economics,

Chengdu, China
†††School of Computer Science, The University of Nottingham, UK

ABSTRACT

This paper presents a very fast local tone mapping method

for displaying high dynamic range (HDR) images. Though

local tone mapping operators produce better local contrast

and details, they are usually slow. We have solved this

problem by designing a highly parallel algorithm, which can

be easily implemented on a Graphics Processing Unit (GPU)

to harvest high computational efficiency. At the same time,

the proposed method mimics the local adaption mechanism

of the human visual system and thus gives good results for a

wide variety of images.

Index Terms— Local tone mapping, high dynamic

range, parallel computation, GPU, CUDA

1. INTRODUCTION

Dynamic range of a scene or an image is defined as the ratio

of the highest to the lowest luminance. The real world

scenes often have a very wide range of luminance (Fig. 1),

sometimes exceeding 10 orders of magnitude. To reproduce

these scenes presents a challenge for conventional digital

capture and display devices, which suffer a limited dynamic

range of only 2 orders of magnitude. Radiance maps [1, 2],

obtained by merging a sequence of low dynamic range

(LDR) images of the same scene taken under different

exposure intervals (Fig. 1), are able to record the full

dynamic range of the scene in 32-bit floating-point number

format. However, LDR reproduction devices such as CRT

monitor and printer are usually only 8-bit per color channel.

Tone Mapping or Tone Reproduction is the process to

compress the dynamic range of the radiance maps to fit into

that of the display devices, while preserving as much of

visibility and visual contrast as possible.

This paper addresses this issue by presenting a novel

GPU-accelerated local tone mapping method for displaying

HDR images. The organization of the paper is as follows. In

the next section, we briefly review previous works of tone

mapping and tone mapping on the GPU. We describe our

algorithm in Section 3 and its GPU implementation in

Section 4 in detail. Section 5 presents experimental results

and Section 6 concludes the paper.

Fig.1. Selected multi-exposed image set of the same scene.

2. REVIEW OF TONE MAPPING METHODS

Tone mapping operators are usually classified as either

global or local. Global tone mapping techniques apply the

same appropriately designed mapping function to every

pixel across the image. [3] and [4] are pioneering works.

The operators attempt to match the display brightness with

real world sensations, and match the perceived contrast

between the displayed image and the scene respectively.

Later, [5] proposes a technique based on a comprehensive

visual model, successfully simulating important visual

effects like adaptation and color appearance. Further, [6]

presents a method based on logarithmic compression of

luminance values, imitating the human response to light.

Recently, [7] formulates the tone mapping problem as a

quantization process and employs an adaptive conscience

learning strategy to obtain mapped images. Perhaps the most

comprehensive technique is still that of [8], which first

improves histogram equalization and then extends this idea

to incorporate models of human contrast sensitivity, glare,

spatial acuity, and color sensitivity effects.

Local tone mapping techniques use spatially varying

mapping functions. [9-12] are based on the same principle

of decomposing an image into layers and differently

compressing them. Usually, layers with large features are

strongly compressed to reduce the dynamic range while

layers of details are untouched or even enhanced to preserve

details. [13] presents a method based on a multiscale version

of the Retinex theory of color vision. [14] attempts to

incorporate traditional photographic techniques to the digital

domain for reproducing HDR images. [15] compresses

dynamic range through the manipulation of the gradient

domain in the logarithmic space. More recently, [16]

proposes a novel method by adjusting the local histogram.

There has been little published research to explore

rendering HDR images on the GPU [17,18] and these works

have two noticeable drawbacks: (1) implementing already

existing tone mapping methods instead of designing a new

algorithm with the GPU in mind, in which case the high

parallelism may not be guaranteed; (2) transmitting

computation to the GPU by mapping general purpose tasks

to graphics pipeline, which requires proficiency of graphics

programming language like OpenGL. In comparison, our

method is inherently parallel and can be easily implemented

on the GPU using Compute Unified Device Architecture

(CUDA) [19].

3. ALGORITHM

Local tone mapping methods involve spatial processing and

therefore have advantages in preserving details and local

contrast over global ones. However, it implies in a larger

amount of computational cost, making local tone mapping

methods slow and unsuitable in real time applications such

as HDR video. We solve this problem by rendering

individual pixels in parallel. Local tone mapping

computation is based on individual pixels and achieves

localization by considering local pixel statistics and contexts,

which damages the parallelism of the system and therefore

is unsuitable to be implemented on the GPU. Our method

divides images into non-overlapping rectangular blocks and

reproduces contrast and brightness in each of them

simultaneously using a highly parallel global tone mapping

operator. This strategy subtly addresses the issue that local

operators are hard to parallelize and provides promising

methods for GPU acceleration. On the other hand, our

design is also consistent with how the human visual system

copes with high contrast scenes [16] and consequently

ensures visual quality of the mapped images.

3.1. Global tone mapping in local regions

First, our algorithm segments images into independent

rectangular blocks, in which we conduct HALEQ [16], a fast

global tone mapping method with potential to be paralleled

as discussed in Section 4.2. HALEQ works by striking a

balance between linear compression and histogram

equalized compression in the mapping process as Eq. (1).

The left image in Fig. 2 shows the mapping result.

)],([)()],([),(yxDLC1yxDECyxd ⋅−+⋅= ββ (1)

D(x, y) is the input luminance while d(x, y) is the output

display intensity level. EC and LC is the histogram

equalization and linear mapping function respectively. β

controls the contrast enhancement level.

3.2. Boundary and halo artifacts elimination

The next step is to fight boundary artifacts between blocks

and "halo" around edges (like between the building and the

sky in the left image of Fig. 2), which are due to the fact that

pixels with similar values but on the opposite sides of the

boundary can be projected to have very different values [16].

Fig.2. Left: direct HALEQ result; middle: after eliminating

boundary and halo artifacts; right: denoised final result.

Our solution is to incorporate spatial information within

different blocks to obtain the final result for a pixel. To be

specific, the final mapped pixel value is the weighted

average of the results from mapping functions HALEQn of

neighboring blocks as Eq. (2). The middle image in Fig. 2

shows the mapped result until this step. The weighting

process can be applied to individual pixels concurrently as

all mapping functions HALEQn (1≤n≤R, R is the number of

segmented blocks) have been already derived in Section 3.1.

The parallelism benefits from the segmentation design.

∑

∑
=

=

=

=

⋅

⋅⋅
=

Nn

n sd

Nn

n sdn

nwnw

nwnwyxDHALEQ
yxd

1

1

)()(

)()()],([
),((2)

)()(
)(,)(snnn s

s

d

d enwenw
σσ −− == (3)

N is the number of used blocks. wd and ws is the distance

weighting function and pixel value similarity weighting

function respectively. dn is the Euclidean distance between

the current pixel position and the center of used blocks. sn is

the normalized difference between the current pixel value

and the average pixel value of block n. σd and σs control the

smoothness between blocks. Larger values of N, σd and σs
facilitate the elimination of boundary and halo artifacts but

produce images with less local contrast.

3.3. Local contrast enhancement adjustment

Another problem of the algorithm is to introduce noises in

uniform areas (like the sky in the middle image of Fig. 2) if

a common parameter β is applied in Eq. (1). This is because

the contrast enhancement is so strong for uniform areas,

although proper for the others, that similar pixels are

mapped to have quite different values. We adaptively

decrease β for uniform areas as Eq. (4) to deal with the issue.

][.
)(

max nn SDSD
e160

−−
−⋅=β (SDn > η) (4)

SDn is the deviation of histogram population for each region.

The threshold η is empirically set for different images and

determines at what level the region is regarded as uniform.

The right image in Fig. 2 shows the denoised image.

4. GPU IMPLEMENTATION

4.1. Basics of CUDA

GPU has gained considerable computational power and the

introduction of programmability has enabled its use outside

the original application domain of computer graphics for

more general purposed computing tasks. CUDA is a newly

emerged scalable parallel programming model and a

software environment for parallel computing on the GPU

[19]. It allows almost direct translation of C codes onto the

GPU, with the syntax consisting of minimal extensions of

the C language.

CUDA programmers accomplish computation tasks on

the GPU via launching kernels. One important way in which

kernels differ from normal C functions is that they are

executed in parallel, over a large number of CUDA threads.

Individual threads concurrently execute the same kernel

program on different data. Threads are organized into blocks

and blocks make up grids, as shown in Fig. 3. Built-in

variables threadIdx, blockIdx and gridIdx, up to three

dimensions, help locate a thread and determine what data it

works on. The tricky parts of CUDA programming are to

decide the grid and block size, and identify target data using

the mentioned ID variables. A kernel program is launched as:

kernel<<<grid_size, block_size>>>(arg);

Constructing local mapping functions (Section 3.1) and

the weighting process (Section 3.2) are the two most

computationally demanding parts of our algorithm. The next

two sections describe their CUDA implementation.

4.2. Local mapping function construction acceleration

Besides deriving the local mapping functions in each region

concurrently, we also propose a parallel implementation of

HALEQ operator as shown in Fig. 4. This recursive binary

cut approach first divides the range of D(I) into two

segments according to Eq. (1) [16] on level 1. The two new

segments are then independently divided into 2 segments

similarly on level 2. The process is recursively applied to

each resultant segment until the predefined number of

segments (256) are created. Each segment is allocated a

displayable value (an integer within [0, 255]). Since the 2i-1

cuts are created independently on level i, we calculate them

in parallel by launching one kernel program on each level as:

DeriveHALEQ_i<<<Grids, 2i-1>>>(arg); (i = 1, 2 ... 8)

DeriveHALEQ_i is the calculation on level i. Grids is a two

dimensional variable with each component equal to the

number of blocks vertically and horizontally. Kernels are so

launched to ensure that one CUDA block is responsible for

constructing the mapping function in one local block and

each thread serves to create a new cut between segments.

4.3. Weighting process acceleration

As discussed in Section 3.2, the weighting process can be

conducted as Eq. (2) for all pixels concurrently. We pre-

calculate the distance weighting function and the similarity

weighting function, and then launch only one kernel as:

Weighting <<<Grids, Blocks>>>(arg);

Fig.3. CUDA threads organization. Courtesy of NVIDIA.

Fig.4. Recursive binary cut approach for HALEQ.

Weighting is the kernel program to calculate Eq. (2). Grids

is the same variable as that of the kernel in Section 4.2.

Blocks is a two dimensional variable, whose first and

second dimension size is equal to the number of pixels of a

local block horizontally and vertically. In this manner, each

CUDA thread is in charge of the weighting process for one

pixel to get the final mapping result.

5. EXPERIMENTAL RESULTS

5.1. Mapping results

Fig. 5 shows two examples of the resultant images, which

are comparable to those of state-of-the-art techniques like

[11, 14]. Compared with Durand and Dorsey's super

mapping operator [11] (Fig. 6), our method has the

advantage of preserving more details (like in the window

areas) while theirs produces images with more local contrast.

5.2. Computational efficiency

To demonstrate the computational efficiency of our method,

we implement it on both the CPU and GPU. For the test

image Clock Building with 768×1024 pixels (Fig. 2) divided

into 64×64 blocks, it takes 1.477s for an i5-2410M CPU at

2.30Hz with 4GB RAM running 64-bit Windows 7 Ultimate

to compute the final result. Local mapping function

construction and weighting process occupies 0.392s and

0.899s respectively. The GPU experimental platform is

NVIDIA GeForce GT 550M with 2 multiprocessors.

Without carefully considering optimizations of memory use

and the cooperation between the CPU and GPU, CUDA

codes shorten the time to 0.358s. Specifically, the mapping

function construction time is reduced to 0.172s while the

weighting process time to 0.103s, from which we experience

about 2 and 9 times speedup. The reason that the weighting

process has gained a higher ratio of acceleration is that it has

more computations with potential to be paralleled.

The current running time is satisfying, which is about 5

times faster than Fattal et al.’s operator [15], 6 times faster

than Reinhard et al.’s operator [14], and comparable to

Durand and Dorsey’s method [11]. More importantly, the

CUDA model has so fine scalability that a GPU with more

multiprocessors easily brings further acceleration in scale,

which is very likely to decrease the experimental time

0.358s down to a real time level. This feature provides our

novel GPU accelerated tone mapping method a promising

advantage for practical applications.

6. CONCLUSION AND FUTUREWORK

We have presented a novel GPU-accelerated tone mapping

method, which has been demonstrated fast and effective for

displaying HDR images. Future work focuses on optimizing

the CUDA implementation and using a better GPU to render

HDR videos in real time.

7. ACKNOWLEDGEMENTS

Radiance maps used in this paper courtesy of corresponding

author(s). This project Sponsored by National Natural

Science Foundation of China (Grant No. 60903128), the

Scientific Research Foundation for the Returned Overseas

Chinese Scholars and the Program for New Century

Excellent Talents in University of State Education Ministry,

and Excellent Youth Foundation of Sichuan Scientific

Committee (2012jq0017).

8. REFERENCES

[1] P. E. Debevec and J. Malik, “Recovering high dynamic range

radiance maps from photographs”, Proc. ACM SIGGRAPH’97, pp.

369 – 378, 1997.

[2] T. Mitsunaga, S. K. Nayar, Radiometric self calibration,

“Proceedings of the Computer Vision and Pattern Recognition,

vol.1, 1999, pp.374–380.

[3] J. Tumblin and H. Rushmeier, “Tone reproduction for realistic

images”, IEEE Computer Graphics and Applications, vol. 13, pp.

42– 48, 1993.

[4] G. Ward, A contrast-based scalefactor for luminance display, in:

Graphics Gems IV, Academic Press, 1994, pp. 415–421.

[5] J.A. Ferwerda, S.N. Pattanaik, P. Shirley, D.P. Greenberg, A

model of visual adaptation for realistic image synthesis, in:

Proceedings of the SIGGRAPH’96, 1996, pp. 249–258.

[6] F. Drago, K. Myszkowski, T. Annen and N. Chiba, “Adaptive

Logarithmic Mapping For Displaying High Contrast Scenes”, The

Journal of Computer Graphics Forum, Vol.22, No, 3, pp. 419-426,

2003.9.

Fig.5. Two mapped results of our method.

Fig.6. Comparison with other local operators. From left to

right: result of ours, Durand & Dorsey's [11], Reinhard's [14].

[7] J. Duan, G. Qiu, G. M. D. Finlayson, Learning to display high

dynamic range images, Pattern Recognition 40 (10) (2007) .

[8] G. W. Larson, H. Rushmeier, C. Piatko, “A visibility matching

tone reproduction operator for high dynamic range scenes”, IEEE

Trans on Visualization and Computer Graphics, vol. 3, pp. 291 –

306, 1997.

[9] K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang and K.

Zimmerman, “Spatially nonuniform scaling functions for high

contrast images”, Proc. graphics Interface’93, pp. 245 – 253, 1993

[10] J. Tumblin and G. Turk, “LCIS: A boundary hierarchy for

detail preserving contrast reduction”, In Proc. of ACM

SIGGRAPH’99, pp. 83-90.

[11] F. Durand and J. Dorsey, “Fast bilateral filtering for the

display of high-dynamic-range images”, ACM Trans. Graph.

(special issue SIGGRAPH 2002) 21, 3, 257-266, 2002.

[12] X. Li, K. Lam, L. Shen, “An adaptivea lgorithm for the

display of high-dynamic range images”, Journal of Visual

Communication and Image Representation, 18 (5) (2007) 397–405.

[13] D. J. Jobson, Z. Rahman and G. A. Woodell, “A multiscale

Retinex for bridging the gap between color images and the human

observation of scenes”, IEEE Transactions on Image processing,

vol. 6, pp. 965-976, 1997

[14] E. Reinhard, M. Stark, P. Shirley and J. Ferwerda,

“Photographic tone reproduction for digital images”, Proc. ACM

SIGGRAPH’2002.

[15] R. Fattal, D. Lischinski and M. Werman, “Gradient domain

high dynamic range compression”, Proc. ACM SIGGRAPH’2002.

[16] J. Duan, M. Bressan, C. Dance and G. Qiu, “Tone-mapping

high dynamic range images by novel histogram adjustment ” .

Pattern Recognition, vol. 43, no.5, pp. 1847-18622010.

[17] Goodnight N., Wang R., Woolley C., Humphreys G.:

Interactive time-dependent tone mapping using programmable

graphics hardware. In Proceedings of the 14th Eurographics

Workshop on Rendering, pp. 26–37, June 2003

[18] Zhao, H. and Jin, X. and Shen, J., Real-Time Tone Mapping

for High-Resolution HDR Images, International Conference on

Cyberworlds, pp. 256--262, 2008.

[19] http://developer.nvidia.com/object/cuda.html.

