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Diffusion spectrum MRI (DSI) provides model-free estimation of the diffusion ensemble average propagator (EAP)
and orientation distribution function (ODF) but requires the diffusion data to be acquired on a Cartesian g-space
grid. Multi-shell diffusion acquisitions are more flexible and more commonly acquired but have, thus far, only
been compatible with model-based analysis methods. Here, we propose a generalized DSI (GDSI) framework to
recover the EAP from multi-shell diffusion MRI data. The proposed GDSI approach corrects for g-space sampling
density non-uniformity using a fast geometrical approach. The EAP is directly calculated in a preferable coor-
dinate system by multiplying the sampling density corrected g-space signals by a discrete Fourier transform
matrix, without any need for gridding. The EAP is demonstrated as a way to map diffusion patterns in brain
regions such as the thalamus, cortex and brainstem where the tissue microstructure is not as well characterized as
in white matter. Scalar metrics such as the zero displacement probability and displacement distances at different
fractions of the zero displacement probability were computed from the recovered EAP to characterize the
diffusion pattern within each voxel. The probability averaged across directions at a specific displacement distance
provides a diffusion property based image contrast that clearly differentiates tissue types. The displacement
distance at the first zero crossing of the EAP averaged across directions orthogonal to the primary fiber orientation
in the corpus callosum is found to be larger in the body (5.65 + 0.09 pm) than in the genu (5.55 + 0.15 pm) and
splenium (5.4 4 0.15 pm) of the corpus callosum, which corresponds well to prior histological studies. The EAP
also provides model-free representations of angular structure such as the diffusion ODF, which allows estimation
and comparison of fiber orientations from both the model-free and model-based methods on the same multi-shell
data. For the model-free methods, detection of crossing fibers is found to be strongly dependent on the maximum
b-value and less sensitive compared to the model-based methods. In conclusion, our study provides a generalized
DSI approach that allows flexible reconstruction of the diffusion EAP and ODF from multi-shell diffusion data and
data acquired with other sampling patterns.

1. Introduction

Q-space diffusion magnetic resonance imaging (QSI) provides model-
free estimation of the diffusion ensemble average propagator (EAP, also
known as spin displacement probability density function and diffusion
spectrum) and diffusion orientation distribution function (ODF) only
relying on a Fourier relationship between the attenuated echo signal in g-

space and the EAP. In the 1960s, Stejskal and Tanner formulated the
pulsed gradient spin echo (PGSE) nuclear magnetic resonance (NMR)
experiment using the propagator language that Einstein used to formu-
late Fick's Law (Einstein, 1905; Stejskal and Tanner, 1965). Stejskal and
Tanner also proposed to recover the propagator of non-Gaussian diffu-
sion and flow by taking a Fourier transform of signals measured by
varying pulsed gradient direction and strength (Stejskal, 1965). To
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simplify the initial formalism, Karger and Heink later introduced the
concept of the EAP (Karger and Heink, 1969), which denotes the
ensemble probability that spins at any starting position in a heteroge-
neous system displace by a certain displacement. In the 1980s, the PGSE
NMR experiment was extended to MRI (Cory, 1990; Jenner et al., 1988).
Callaghan then recast Stejskal and Tanner's formalism in terms of the
wave vector, q (Callaghan et al., 1988), and proposed the concept of
g-space, in analogy to k-space (Twieg, 1983; Ljunggren, 1969). It was not
until the mid-1990s that QSI was introduced to study the central nervous
system (King et al., 1994, 1997). In the early 2000s, Assaf and Cohen
conducted a series of QSI studies (Cohen and Assaf, 2002) to infer the
neuronal structure of bovine optic nerve (Assaf and Cohen, 1999, 2000),
rat brain (Assaf and Cohen, 2000) and spinal cord (Assaf et al., 2000),
and in vivo human brain (Assaf et al., 2002, 2005) from the EAP. Around
the same time, Wedeen utilized QSI to delineate intra-voxel crossing fi-
bers (known as diffusion spectrum imaging (DSI) (Wedeen et al., 2000;
Wiegell et al., 2001; Lin et al., 2003)) for tracking white matter fiber
pathways (i.e. tractography) in the in vivo human brain (Conturo et al.,
1999; Mori et al., 1999) and proposed a new theory regarding the
fundamental geometric structure of hemispheric fiber pathways (Wedeen
etal., 2012). One limitation of DSI is that it only recovers the EAP and the
diffusion ODF from g-space data acquired on a 3-dimension (3D) Carte-
sian grid. Here, we generalize the Cartesian DSI method by proposing a
flexible framework that is also compatible with non-Cartesian (e.g.
multi-shell) g-space data.

Even though the ODF is of great interest for tractography purposes,
the EAP provides additional information of the tissue microstructure
beyond fiber orientations. The EAP was found to be sensitive to the de-
gree of myelination (Fujiyoshi et al., 2016), and used to study spinal cord
maturation (Assaf et al., 2000) and degeneration (Farrell et al., 2010) in
the rat. In addition, the EAP may be used to characterize age-related
white matter (WM) demyelination in healthy populations (Fatima
et al., 2013), differentiate lesions from normal appearing white matter
and normal tissue in patients with multiple sclerosis (Assaf et al., 2002,
2005; Hori et al., 2014), and detect remyelination within the multiple
sclerosis lesions (Fujiyoshi et al., 2016; Tanikawa et al., 2017). The EAP
has also been used to map spinal cord diameter in an ex vivo rat (Ong and
Webhrli, 2010; Ong et al., 2008) and in vivo human axon diameters (Hori
et al., 2016; Kamiya et al., 2014). The various metrics derived from the
EAP to characterize tissue microstructure properties include
return-to-origin probability (or zero displacement probability) (Cohen
and Assaf, 2002; Wu et al., 2008; Mitra et al., 1995; Descoteaux et al.,
2011), displacement distance at half maximum (Cohen and Assaf, 2002),
kurtosis (Fujiyoshi et al., 2016), mean-squared displacement (Cory,
1990; Cohen and Assaf, 2002; Wu et al., 2008), and fiber population
dispersion (Assemlal et al., 2011), etc.

While model-based methods have several advantages, a model-free
approach for recovering the EAP provided by DSI can be particularly
valuable for studying brain regions where the tissue microstructure is not
as well characterized as in white matter, such as in gray matter (GM),
demyelinating lesion (Assaf et al., 2002, 2005; Fujiyoshi et al., 2016;
Hori et al., 2014; Tanikawa et al., 2017), hemorrhagic lesion (Edlow
etal., 2013, 2016), or a tumor (Taylor et al., 2017; Yamada et al., 2015).
A model-free approach could also be valuable for diffusion measurements
outside the brain (e.g. muscle (Wedeen et al., 2005; Taylor et al., 2015;
Hoffman et al., 2018)) or even potentially for studying vasculature
(Callaghan, 2011).

Unfortunately, the use of DSI's Fourier relationship between the g-
space signal and the EAP (Eq. (1)) demands performing the Fast Fourier
Transform (FFT) of g-space samples acquired on a 3D Cartesian grid (e.g.
11x11x11 Cartesian grid with corners removed). The Cartesian sam-
pling proposes several problems. Most importantly, the prescribed Car-
tesian g-space samples no longer locate on a strict Cartesian grid after the
b-value and b-vector are corrected to account for gradient nonlinearity
and subject motion (Leemans and Jones, 2009; Mesri et al., 2018; Guo
et al., 2018), which decreases the accuracy of the FFT. Further, the
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Cartesian sampling is not optimal with many other analysis methods,
such as diffusion tensor imaging (DTI) (Basser et al., 1994; Pierpaoli
et al., 1996), neurite orientation dispersion and density imaging (Zhang
et al., 2012) and the constrained spherical deconvolution (CSD) (Tour-
nier et al., 2004, 2007; Jeurissen et al., 2014). In addition, the Cartesian
diffusion data requires specialized data pre-processing. For example, the
widely used “eddy” function (Andersson and Sotiropoulos, 2016) from
the FMRIB Software Library (FSL) (Jenkinson et al., 2012; Smith et al.,
2004) for eddy current correction and co-registration cannot process
Cartesian data. The other problem with the Cartesian sampling is that the
recovered EAP via the FFT also locates on a Cartesian grid, which is
challenging to visualize and analyze (Vaillancourt et al., 2015). Last, the
availability of Cartesian sampling protocols is limited on clinical MRI
scanners.

Multi-shell g-space sampling has become the new standard for data
acquisition. Some of the benefits of multi-shell sampling include the: (1)
uniform angular resolution; (2) flexible sampling pattern and scan time
(i.e. the number shells, and the b-value and the number of directions on
each shell); (3) high compatibility with other processing and analysis
methods; (4) capability to recover the EAP given sufficient sampling
coverage, and (5) widely available protocols on clinical MRI scanners.
Consequently, the multi-shell sampling scheme has been adopted by the
MGH-USC (Setsompop et al., 2013; McNab et al., 2013; Fan et al., 2014)
and WU-Minn-Ox (Sotiropoulos et al., 2013; Ugurbil et al., 2013; Van
Essen et al., 2013) Human Connectome Project (HCP) to acquire gold
standard diffusion data on a large population. Many widely used analysis
methods which were originally proposed for single-shell diffusion data,
such as g-ball imaging (QBI) (Aganj et al., 2010; Kamath et al., 2012;
Tuch, 2004), CSD and Bayesian estimation of diffusion parameters ob-
tained using sampling techniques for modeling crossing fibers (BED-
POSTX) (Behrens et al., 2003), are now also compatible with multi-shell
data.

Most EAP reconstruction methods using multi-shell data are based on
DSI's Fourier relationship, but impose a g-space signal model, relin-
quishing the benefits that arise due to DSI being model-free. For example,
the diffusion orientation transform (DOT) method (Ozarslan et al., 2006;
Canales-Rodriguez et al., 2010a) assumes Gaussian diffusion. Alterna-
tively, the multiple g-shell diffusion propagator imaging (mq-DPI)
method (Descoteaux et al., 2009, 2011) models g-space signals as the
solution of a Laplace equation in spherical coordinates. The Bessel
Fourier orientation reconstruction (BFOR) (Hosseinbor et al., 2013)
models g-space signals using the heat equation. The spherical polar
Fourier imaging (SPFI) (Assemlal et al., 2009) method models g-space
signals in terms of Gaussian-Laguerre polynomials. The mean apparent
propagator (MAP)-MRI (Ozarslan et al., 2013) method models g-space
signals in terms of Hermite polynomials. For each approach, the accuracy
and robustness to noise of the imposed model needs to be evaluated
comprehensively for different microstructural configurations and g-space
sampling schemes (e.g. maximum b-value).

Compared to the abundance of the model-based methods described
above, there are very few model-free methods for reconstructing the EAP
from multi-shell data. In hybrid diffusion imaging (HYDI), the multi-shell
g-space samples are gridded to a Cartesian lattice (similar to k-space
gridding (Beatty et al., 2005)) for a FFT-based DSI reconstruction (Wu
and Alexander, 2007). The HYDI method has been used to directly
compute EAP measures such as the zero displacement probability,
mean-squared displacement and diffusion ODF but does not provide a
complete solution of the EAP (Wu et al., 2008). The optimal way for
gridding the g-space data has not been investigated. Further, the gridding
process is also computationally expensive. Generalized g-sampling im-
aging (GQI) provides model-free diffusion ODF (Yeh et al., 2010; Tian
et al., 2017a) and has been applied to multi-shell radial q-space samples
(Baete et al., 2015; Baete and Boada, 2017). GQI, however, does not
reconstruct the EAP.

In the current study, we developed a generalized DSI (GDSI) frame-
work that is compatible with both Cartesian and non-Cartesian g-space
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diffusion MRI data. GDSI recovers the EAP in a preferable arbitrary co-
ordinate system using the Discrete Fourier Transform (DFT). Scalar
metrics such as zero displacement probability and displacement distance
at half maximum can be easily computed from GDSI's EAP and are shown
useful to characterize the diffusion process in different tissue types. Using
GDSI's matrix formalism, the contribution and combination of g-space
signals to the diffusion ODF is elucidated. The fiber crossing angles
estimated by model-free and model-based methods are depicted. GDSI is
tested on multiple different types of multi-shell datasets including those
from the HCP.

2. Theory

In DSI, the EAP P(r) is recovered from the Fourier transform of the

normalized g-space signal S(q) (Callaghan et al., 1988; Callaghan, 1991,
1996; Mitra and Halperin, 1995) as:
P(r)=7(5(q)) = fffqu_zs(q)e’z”iq"dq. )
7 denotes the Fourier transform. r is the 3D spatial vector describing a
spin displacement (ru, with r=|r| the displacement distance and unit
vector u the displacement direction). q is the gradient wave vector (or g-
space points) describing the diffusion-encoding scheme (qv, with g = |q|
the encoding strength and unit vector v the encoding direction). q is
proportional to the product of the strength and duration of a rectangle
diffusion-encoding gradient, and proportional to the square root of b-
value (Eq. (A2)).

As S(q) is real and symmetric and P(r) is real (Wedeen et al., 2005),
the exponential function in Equation (1) can be reduced to a cosine
function (Yeh et al., 2010; Paquette et al., 2016) as:

P(r) = [ ;ezsS(@)cos(22q -T)dg. 2

For a finite number (N) of measured g-space samples, the EAP is
calculated as a linear weighted summation of all diffusion signals as:

N
P(r) = S(g;)cos(2q;-T)Aq;, 3
pa
or in matrix form:
P(r) cos(2rq, - 1)) cos(2zqy -1y) Aq, 0 S(q,)
P(ry) cos(2nq, - Ty) cos(2nqy - Ty) 0 Agy | [ S(qy)
P F c s

P is a column vector (Mx1) of recovered EAP values evaluated at spin
displacements rj (1 <j <M, jeZ). rj can reside in an selected coordinate
system, e.g. Cartesian or polar, to assist the visualization and analysis of
the EAP. F is the DFT matrix (MxN). C is the diagonal g-space sampling
density non-uniformity correction matrix (NxN). S is a column vector
(Nx1) of the normalized attenuated echo signal measured at g-space
location q; (1 <i<N, i€Z).

Provided the gradient separation (A) and duration (5) are kept con-
stant, the spin dephasing term (® = 2zqr) in each element of matrix F
can be expressed using the commonly reported b-value (b) and b-vector
(v) of the diffusion pulse sequence following GQI's derivation (Yeh et al.,
2010) (see Appendix A) as:

COS( V 6Dwmerbl Vi j'lul)

COS( Vv 6DwalerbN VN - llul)
COS( V 6Dwat€rbl 4 ﬂMuM)

€08 (/6D ey Vv - Aallr)

N 6)]
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Dyater (2.5x1072mm?/s) is the diffusion rate of free water at 37 °C. A
(1 <j<M, jeZ) is the scalar that relates an arbitrary displacement dis-
tance r; and the mean displacement distance of free water (MDD,yqzer)-

MDDyygrer = \/6Dyarer(A — 6/3) is calculated using Einstein's equation
(Einstein, 1905) with effective diffusion time A-§/3 and an assumption of
Gaussian diffusion. MDDy, is a constant number for all voxels, given
the constant diffusion encoding timing A and 6 in a diffusion pulse
sequence, and represents the longest displacement a spin can transverse
in a specific experiment. It is more intuitive to express an arbitrary dis-
tance r; as a ratio of this upper bound compared to using actual numbers.

Each diagonal element Ag; of C represents the g-space volume asso-
ciated with each g-space samples g; (1 <i< N, i€Z). The signal measured
at a sparsely sampled g-space location associates with a large g-space
volume and is therefore scaled up, and vice versa.

To summarize the EAP's angular structure, the diffusion ODF is
calculated by a radial integration of the EAP weighted by the displace-
ment distance (r) to the power of n, along multiple directions as:

O, 1o n(W) = /’" P(rw)rdr. 6)

Unit vector w denotes the direction along which the diffusion ODF is
being computed. r; and r, is the starting and ending displacement dis-
tance along w respectively for the radial integration. n is the power of
displacement distance. When n = 0 (e.g. in QBI), the ODF represents the
ensemble probability that spins displace along a certain direction. When
n=2 (e.g. in DSI), the ODF represents the mean squared displacement
distance along a certain direction. A larger n results in a diffusion ODF
with higher contribution from the EAP at longer displacement distance.

The diffusion ODF can be calculated using a direct and indirect
approach from the EAP. For the indirect approach, the EAP is first
recovered along radial lines in the directions that the ODF will be
reconstructed (using Egs. (4) and (5)) and then integrated. The EAP can
be modified prior to ODF calculation, e.g. clipping the negative lobes of
the ringing.

For the direct approach, the DFT and the radial integration are
combined into a single step. The direct approach is advantageous for
reducing computation and elucidating the relationship between g-space
samples and the ODF, but does not allow modifying the EAP before the
integration. Specifically, for a finite number of displacements with dis-

C)

tances evenly spaced between r; and r,, ODF is calculated as a linear
weighted summation of EAP values as:

M
Orsen(W) =Y P(riw)riAry(r, < 1 < 1), @
=
or in matrix form:
P(riwy)
Oy, rn(W1) (-] 0 P(ryw:)
: =ar| i : E @)
Or (W) 0 (1] || Plrow)
Orsiren Irsen P(VMWL)
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O, r, n is a column vector (Lx 1) of recovered ODF values evaluated along
directions wi (1 <k <L, keZ) for a given set of rs, r. and n. Ar=(re-15)/(M-
1) is a constant term accounting for the distance interval Ar; for
displacement r; (1 <j <M, jeZ, rs<r1j<re, 11 =T5, Ty =Te). Ir, sz is the
weighted summation matrix (L x ML) of the radial integration of the EAP.
P is a column vector (MLx1) of the EAP values along directions wy at
displacement distances r;.

Substituting Equations (4) and (5) into (8) provides a solution for the
ODF directly from the g-space signals:

Zcos( 6D, 0DV - /1,w1> -/1!'7
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Equation (9) formulates the DSI ODF reconstruction as a linear sys-
tem, which provides an intuitive perspective to understand the rela-
tionship between the g-space signal and the ODF. To visualize the
contribution and combination of g-space samples to the ODF, the row of
R;, ;.n for computing the ODF value along the g,-axis (Fig. 1 bottom to
top) was calculated, with parameters 4, =0, . =1, and n= 0 (Ro,1,0(qz)
in Fig. 1a) or n=2 (Ro,1,2(q,) in Fig. 1b). Rg1,0(q,) and Rg12(q,) are
displayed as 1D profile along the g,-axis (Fig. 1a, c), 2D cross-section on
the gy-q, plane (Fig. 1b, d), and 3D contour at single q(b)-values (Fig. 1e
and f). The weights are rotationally symmetric about the g,-axis (Fig. 1b,

M
/_:ZI €08 (/6D yqrerby Vi - W1 - A

d, e, f), since the weight of a specific q-space sample is determined by the
projection of its g-value to the g,-axis (i.e. v/b;v; - wx in Eq. (9)). The 1D
profile on the g,-axis is a sinc function (Yeh et al., 2010; Tian et al.,
2017b) (Fig. 1a), or resembles the shape of a sinc function (Fig. 1c).

0, den A(W1)
: = Ar-MDD[,,, - :
O, 0on M
w Zcos( 6D,00:b1 V1 - A wL) A > 08 (/6D yurer by Vi - AWy vy
Ojyjen j=
Risjen
Aq, 0 S(q,)
Eol ®
0 Agy S(qy)
_—_— — —
C N

where A<A<l, (1<j<M, j€Z), A1 =2is=T1y/MDDyater, ‘m=2Ae=Te/
MDD,yqter. If Ar and MDD}, . are set to 1, this only affects the scaling the
absolute values of the ODF and therefore there is no loss of angular in-
formation. R, ;, » is the reconstruction matrix (LxN) of ODF values. An
ODF value O, ,, (W) along a specific direction wy is computed as a linear
weighted summation of all sampling density corrected g-space signals,
with linear weights determined by the kth row of R ;, n(Wk).

Ro1.0(d,)

a _ b 2D cross-section in q,-q, plane
% E b-value ©Cartesian
§ 5 (tsiﬂiﬂlql Samples ;
ys’ ~7,000
12 n——— 0.8
E* - 4,430[
18 ° o 00
i 04
0.2
2
18 0
o I -0.2

1D profile along q, axis

—_— e e —

3D contour at single b-values

1,120 2,520 4,480 7,000 (ZX;‘.'m”f,

Y
Thin disks
(consistent with Q-ball imaging)

The 3D contours of Rg1,0(q,) for high b-values (e.g. Fig. 1le,
b > 2,000 s/mm?) resemble thin discs (i.e., the weight for g-space points
outside the gx-qy plane are close to zero), indicating that the ODF value
along the g,-axis is approximately the sum of signals on the equator of
individual q(b)-values on the gx-qy plane, which is in agreement with
QBI's use of the Funk-Radon transform. This approximation is more ac-
curate (i.e. thinner disc) for higher b-values. In case of multiple q(b)-
values, the ODF value along the g,-axis can be approximated as the
sum of signals on the entire gx-qy plane.

An ODF can be decomposed into component ODFs from individual g-

Ro,1,2(CIz)

C d 2D cross-section in q,-q, [lane
b-value
1slmm2)qu

7,000 I

®Cartesian
Samples

b-value

(simm?)

0 280 1,1202,5204,4807,000

1D profile along g, axis
41\

3D contour at single b-values

QOQQO

1,120 2,520 4,480 7,000 v

Fig. 1. The reconstruction matrix R 1,0(q,) and Rg1,2(q,) for computing the orientation distribution function value along q,-axis (bottom to top) with parameters
4s=0,4=1,n=0(a,b,e)and 4, =0, 1. =1,n=2 (c, d, f). Ro1,0(q,) and Ry 1 2(q,) are displayed as 1D profile along the g,-axis (a, c), 2D cross-section on the qy-q,
plane (b, d), and 3D contour at single q(b)-values (e, f). The green dots display the standard DSI-11 Cartesian g-space sampling locations with 7,000 s/mm? maximum

b-value.
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space samples by rewriting Equation (9) as:

1 0 0

0

Oipon = AIR; 1 C | S(q,) +5(q,) +o+8(w) | .
0 0 1

N
ZS Aﬂn

i=1

10

OZI., on is the ith column of the matrix R;_ , », representing the impulse
response ODF from a unit signal g-space sample located at point g;. The
impulse response ODF from q-space samples located on the qZ -axis with
different q(b)-values are displayed in Fig. le and f). S(q;)0% i sn 1S the
component ODF from the g-space sample located at point g;.

Similarly, an ODF can also be decomposed into component ODFs from
g-space samples with identical q(b)-values (i.e. individual shells).

3. Methods
3.1. Data simulation

Simulations were performed with a multi-tensor model using the
“multi_tensor” function of the Diffusion Imaging in Python (DIPY) soft-
ware (Garyfallidis et al., 2014) (http://nipy.org/dipy/). Each individual
tensor had an axial diffusion rate of 1.6x10 >mm?/s and a radial
diffusion rate of 0.2x 10~ mm?/s. A noise-free three-fiber-crossing voxel
(Fig. 2) was simulated for illustration purpose, with each fiber contrib-
uting 55%, 25% and 20% of the total signal, using the standard DSI
11x11x11 Cartesian sampling (hereafter referred as DSI-11) with 7,
000 s/mm? maximum b-value.

3.2. Data acquisition

With Institutional Review Board (IRB) approval and written informed

DSI EAP GDSI EAP
0.9 0.9
0.75 0.75
0.6 0.6
0.45 045
0.3 0.3
0.15 0.15
0 0
d DSI ODF @ GDsSI ODF GDSI ODF

? (Dlrect;? (Indlreci?

ODF Min mmmss——— s ODF Max
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consent, data were acquired on a healthy subject using a clinical 3 Tesla
MRI system (Discovery MR750, GE Healthcare, Milwaukee, Wisconsin)
at Stanford. The scanner was equipped with a 32-channel radio frequency
receive coil (Nova Medical, Wilmington, Massachusetts). A 2D single-
refocused PGSE single-shot (SS) echo-planar-imaging (EPI) sequence
was used to acquire multi-shell diffusion-weighted image (DWI) volumes
of 30 contiguous axial slices covering the corpus callosum (CC). The data
have: TE/TR = 95.7/2,000 ms, resolution = 2x2x2mm?>, diffusion time
(A) =48.2ms, gradient duration (§) =31.8ms, 6 shells (including g-
space origin, hereafter referred to as MSL-6, 33xb =0, 103xb =1,400s/
mm?, 103xb = 2,800 s/mm?, 103xb = 4,200 s/mm?, 103xb=5,600s/
mm?, 103xb = 7,000 s/mm?), ASSET parallel imaging factor R = 2. Two
non-DWI (b =0) volumes with reversed phase-encoding direction were
acquired at the beginning of the scan. Non-DWI volumes were inter-
leaved between every 16 DWI volumes.

3.3. Human Connectome Project data

Pre-processed whole-brain T;-weighted and multi-shell diffusion data
of subject 1010 from the MGH-USC HCP consortium and subject 100307
from the WU-Minn-Ox HCP consortium were downloaded for analysis
(https://www.humanconnectome.org/). The diffusion data from both sites
were acquired using 2D single-refocused PGSE SS EPI sequences. The MGH-
USC diffusion data have: resolution=1.5x1.5x1.5mm? A =21.8ms,
5=129ms, 5 shells (MSL-5, 40xb=0, 64xb=1,000s/mm?
64xb = 3,000 s/mm?, 128xb = 5,000s/mm? 256xb= 10,000s/mm?),
maximum g-value (qmax) = 0.12 pm’l (Fanetal., 2016). The WU-Minn-Ox

diffusion data have: resolution=1.25x1.25x1.25mm?, A =43.1ms,
5=10.6ms, 4 shells (MSL-4, 18xb=0s/mm? 90xb=1,000s/mm>?,
90xb = 2,000 s/mm?2, 90xb = 3,000 s/mm?), qmay = 0.0438 pm ! (Sotir-
opoulos et al., 2013). The MGH-USC T;-weighted data were acquired with
a multi-echo magnetization-prepared rapid acquisition gradient echo
(ME-MPRAGE) sequence (van der Kouwe et al., 2008) at 1 mm isotropic
resolution.

0.2 0:4 0:6 0.8 1
GDSIEAP

r=0.995

DSI ODF

0 02 04 06 08 1 0 02 04 06 08 1
GDSI ODF (Direct) GDSI ODF (Indirect)

Fig. 2. Comparison of ensemble average propagator (EAP) (a, b) and diffusion orientation distribution function (ODF) (d-f) recovered from fast Fourier transform
(FFT)-based diffusion spectrum imaging (DSI) (a, d) and proposed matrix formalism-based GDSI reconstruction (b, e, f) on a simulated noise-free three-fiber-crossing
DSI-11 voxel. For both methods, the ODFs are reconstructed with A;=0, 4, =1, n= 2. The ODF from the indirect QSI approach (f) was computed with the negative
values of the EAP clipped to 0, the practice used in DSI reconstruction. The EAP and ODF are normalized by their maximum values. The scatter plots (c, g, h) depict 500
randomly selected values, with correlation from all values reported. The pink arrows highlight a region on ODF that demonstrates the effects of clipping negative

values in EAP to 0 on the consequently reconstructed ODF.
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3.4. Image processing

For the diffusion data acquired on-site at Stanford, the susceptibility-
induced off-resonance field was estimated from the non-DWIs with
opposite phase-encoding direction (Andersson et al., 2003) using FSL's
“topup” function. The susceptibility-induced EPI distortion, eddy current
distortion, field drift and bulk motion were corrected simultaneously
using FSL's “eddy” function. The two non-DWI volumes with reversed
phase-encoding direction were not used within subsequent analysis
steps.

3.5. Regions of interest

For MGH-USC T;-weighted data, cortical surface reconstruction and
volumetric segmentation were performed using FreeSurfer software
(Dale et al.,, 1999; Fischl and Dale, 2000) (https://surfer.nmr.mgh.
harvard.edu/). The volumetric segmentation results (provided by
aparc + aseg.mgz) were co-registered to the diffusion data using Free-
Surfer's “bbregister” function with nearest neighbor interpolation. Binary
masks of 14 regions of interest (ROIs) (i.e. ventricle, white matter (WM),
CC, cerebellar WM, gray matter (GM), thalamus, accumbens, amygdala,
caudate, putamen, pallidum, hippocampus, brainstem, and cerebellar
GM), each containing both hemispheres, were created. The ventricle
mask was created using FreeSurfer's “mri_binarize” function with the
“ventricles” option selected. The CC mask was created by combining
masks of five sub-regions of CC, i.e. the anterior, mid-anterior, central,
mid-posterior and posterior parts (Fig. 8g). Only voxels with FA from DTI
larger than 0.5 in the CC mask were included. Three ROIs covering parts
of pre- and post-central gyrus, through the center of the thalamus and the
pons of the brainstem (red boxes in Fig. 6b-d) were manually selected on
axial slices based on FreeSurfer's volumetric segmentation.

For the HCP data from both consortiums, binary masks of the WM
were resampled from FreeSurfer's volumetric segmentation and eroded
by one voxel.

For each dataset, one ROI located in the centrum semiovale (CSO)
region (Fig. 10), containing the intersection of three white matter fiber
bundles (the CC, the corona radiata (CR), and the superior longitudinal
fasciculus (SLF)), was manually selected based on DTI FA maps. The ROIs
from each dataset all contain 8x10 voxels, but cover slightly different
spatial extension due to the different spatial resolution of each dataset. A
voxel with intra-voxel crossing fibers from each dataset (Fig. 10 magenta
dashed boxes) was selected for demonstration (Figs. 5 and 9).

3.6. Q-space sampling density correction

Numerical computation based on 3D Voronoi diagram (Rasche et al.,
1999) can be used for estimating the sampling density non-uniformity
correction factor for various g-space sampling patterns. For multi-shell
g-space samples, a simple geometry based approach was adopted
(Fig. 4a), in a similar way that the correction factor is calculated for
gridding the k-space data acquired with projection or radial trajectories
(Pauly, 2005).

Specifically, contours (middle shells) (Fig. 4a colored circles) were
generated half-way between each g-space sampling shell to delineate the
radial extent associated with each g-space sample. For the outermost g-
space sampling shell, the outer radial extent (Fig. 4a bold green circle)
was set to be an equal distance from the g-space sample as the inner
contour boundary.

For the sample located at the g-space origin (a single sample for the
averaged b = 0 image), the correction factor is the volume of the central
sphere. For DW samples located on each shell, the correction factor is the
volume associated with the space between the inner and outer contours
divided by the number of samples on the shell (assuming the g-space
samples are uniformly distributed on each shell).

Mathematically, the correction factor V,, for a sample located on the
ith shell with q-value g; is:
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where qo=¢1=0, gns1=(3qnsGns-1)/2, Gi < giy1, 1 <i<ns. g1 and g2
correspond to the b = 0 and smallest non-zero b-value. ns is the number of
shells. Ny, is the number of samples on a shell of g-value g;. The volume of

3
the central sphere (%2) is divided such that the correction factor V,, for

the g-space sample at origin is equal to 1 and therefore the normalized
non-DW signal (equal to the sum of EAP values) is still 1 after density
correction. As the diffusion time is kept constant, the g-value in Equation
(11) can be replaced by the square root of the corresponding b-value (Eq.
(A3)).

3.7. DSI and GDSI reconstruction

The proposed GDSI (Egs. (4), (5) and (9)) method was implemented
in the framework of the DIPY software (available at https://github.com/
giyuantian/GDSI). For the simulated DSI-11 voxel, DSI reconstruction
was performed using DIPY's “DiffusionSpectrumModel”. The EAP was
recovered on a Cartesian grid with a FOV of 2xMDDyyater along each
dimension. The diffusion ODF was computed by integrating the EAP
(negative values clipped to 0) from the center to the MDDygter. GDSI
reconstruction was performed with identical parameters as DSI recon-
struction to obtain the EAP and diffusion ODF (i.e. 4,=0, ., =1, n=2).
Q-space sampling density correction was not used since g-space was
uniformly sampled on a Cartesian grid. The GDSI ODF was computed
using both the direct and indirect approach. For the direct approach, the
impulse response ODF and the component ODF of each g-space sample
were reconstructed. Component ODFs were computed for subsets of g-
space signals with maximum b-values equal to: 0, 280 s/mm?, 1,120s/
mm?, 2,520 s/mm?, 4,480 s/mm? and 7,000s/mm? For the indirect
approach, the negative values of the EAP were clipped to 0 (as performed
in DSI) before calculating the ODF. The Pearson correlation of the EAP
and ODF values from DSI and GDSI reconstruction was reported.

For crossing-fiber voxels from the CSO region from each dataset, EAP
was reconstructed with and without q-space sampling density correction,
on a Cartesian grid with a FOV of 2 x MDDyyter along each dimension and
along radial lines between 0 and MDDygter. The MDD\y,ter for the Stan-
ford, MGH-USC HCP and WU-Minn-Ox HCP data are 23.7 pm, 16.2 pm
and 24.4 pm respectively.

For the MGH-USC HCP data, EAPs were recovered between 0 and
MDDyyater With g-space sampling density correction. Two scalar metrics
were derived from the recovered EAPs:

(1) P;: the probability at a specific displacement distance averaged
across directions;

(2) ry: the displacement distance at which the probability density
decays to a fraction a of the maximum probability (i.e. zero
displacement probability Py) averaged across directions.

For the CC ROI, the displacement distance of the first zero crossing
(ro) was computed in the plane perpendicular to the primary eigenvector
(V1) from DTIL.

For each dataset, GDSI ODFs were reconstructed using the indirect
approach with g-space sampling density and ringing removal (clipping
the EAP values along each radial line beyond the first zero crossing to
zero). The reconstruction parameters were i;=0, 4, = 0.8, n= 2 for the
Stanford and MGH-USC HCP data, and 4;=0, l.=1, n=2 for the WU-
Minn-Ox HCP data. The constant offset were removed. For voxels from
the CSO ROI, the component ODFs from each single shell were also
recovered.

The fiber orientations were delineated from the GDSI ODF using
DIPY's “peaks_from_model” function. Specifically, the local maxima of a
diffusion ODF with an amplitude larger than 5% of the global maximum
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were first detected. If the angle between the two directions of local
maxima was less than 15°, only the direction with the larger ODF
amplitude was preserved. The directions were sorted according to their
associated ODF amplitude. The first three directions were used as the
primary, secondary and tertiary fiber orientations respectively.

3.8. DTI, BEDPOSTX, CSD and GQI reconstruction

For each dataset, the DTI model was fitted using FSL's “dtifit” function
using only those shells with b-values less than 1,500 s/mm?, to obtain the
fractional anisotropy (FA) maps and V1.

The “ball and sticks” model was fitted using FSL's “bedpostx” function
(3 sticks with a range of diffusivities). The estimated secondary and
tertiary fiber orientations with fiber volume fraction lower than 5% were
excluded.

Multi-shell multi-tissue CSD was performed using the MRTrix3 soft-
ware (http://www.mrtrix.org/). The data were corrected for the B1 field
inhomogeneity using MRTrix3's “dwibiascorrect” function. For each
dataset, the segmentation of five tissue types (e.g. GM, WM) was first
derived from the T;-weighted data using MRTrix3's “5ttgen” function
with the “fsI” option. The response functions were calibrated using
MRTrix3's “dwi2response” function with the “msmt_5tt” option on brain
voxels excluding the cerebellum. The fiber ODFs were then computed
using MRTrix3's “dwi2fod” function. Three peaks for each fiber ODF
were delineated using MRTrix3's “sh2peaks” function, without re-
quirements on the peak amplitude. Within each voxel, the secondary and
tertiary peaks were only preserved if their peak amplitudes were larger
than 5% of the amplitude of the primary peak.

GQI reconstruction was performed wusing the “General-
izedQSamplingModel” function from DIPY software. The reconstruction
parameters were 4;=0, 1, = 0.8, n=2 for the Stanford and MGH-USC
HCP data, and 4;=0, 4.= 1, n=2 for the WU-Minn-Ox HCP data, same
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as those used in GDSI. The fiber orientations were delineated from the
GQI ODF using DIPY's “peaks_from_model” function in the same way as
that used in GDSI.

3.9. Statistical analysis

For the MGH-USC HCP data, the mean and standard deviation of Py
and r, within the 14 FreeSurfer ROIs were reported. The Pearson corre-
lation of the T1-weighted and Py values of brain voxels was reported. The
mean and standard deviation of ry perpendicular to DTI V1 within the
five FreeSurfer CC sub-regions were reported.

For the HCP data, the crossing angle in WM voxels between the pri-
mary and secondary fibers, the primary and tertiary fibers, and the sec-
ondary and tertiary fibers estimated using BEDPOSTX, CSD and GDSI
were computed. The angle between two directions (v1, v2) was computed
as cos’l(\vl -¥3|), ranging between ([0, 90°]).

4. Results

Our proposed DFT-based GDSI is equivalent to FFT-based DSI
reconstruction. The EAPs (Fig. 2a and b) and diffusion ODFs (Fig. 2d-f)
recovered from the simulated DSI-11 voxel using the two methods are
qualitatively similar and quantitatively highly correlated (correlation
larger than 0.995). The amplitudes along some directions on GDSI ODF
(Fig. 2d, e, g pink arrows) computed using the direct approach are lower
than those on DSI ODF, because the negative EAP values were not clipped
to 0 in the direct approach.

GDSI's linear system formalism of the diffusion ODF reconstruction
elucidates the contribution of g-space signals to a diffusion ODF. The
diffusion ODF (reconstructed using the direct approach) from the simu-
lated DSI-11 voxel (Fig. 3d) is a summation of 515 component ODFs
(Fig. 3¢, S (qi)Oi’_ 4.n i EQ. (10)). Each component ODF is a multiplication

b impulse response ODFs €

Fig. 3. Decomposition of the diffusion orientation distribution function (ODF) from the simulated noise-free three-fiber-crossing voxel (d) acquired using a standard
diffusion spectrum imaging acquisition with 11x11x11 Cartesian grid and 7,000 s/mm? maximum b-value into component ODFs (c) from the 515 g-space signals (a),
and component ODFs (e) from g-space signals with different maximum b-values (the six b-values along the left-right axis, i.e. 0, 280 s/mm?, 1,120 s/mm?, 2,520's/
mm?, 4,480 s/mm?, 7,000 s/mm?). The q-space signals in (a) are arranged from low to high b-value in a 2D matrix (left to right, top to bottom). Each component ODF
in (c) is the impulse response ODF (b) weighted by the diffusion signal intensity measured at the correspondent g-space location. The size of the impulse response ODF

(b), component ODF (c, e) is proportional to the ODF value.
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Fig. 4. A 2D illustration of the proposed geometrical approach to estimate the q-space sampling density correction factor, i.e. the volume associated with each g-space
sample, assuming g-space samples are uniformly distributed on each shell (a), and the estimated results at each shell for the Stanford (b, blue curve), MGH-USC HCP
(b, red curve) and WU-Minn-Ox HCP data (b, green curve). Four shells are depicted (including the origin) for illustration purpose. Note in (b) the x-axis is specified in

b-value, which is square of the corresponding q-value.

of the signal intensity (Fig. 3a, arranged from low to high q(b)-value, in
the left to right, top to bottom order) and the corresponding impulse
response ODF (Fig. 3b, a column of R;_;, » in Eq. (9)) at a specific g-space
sampling location. As the q(b)-value increases, the angular variation
(high frequency information) of the impulse response ODF and compo-
nent ODF increases, while the contribution (size) of the component ODFs
to the combined ODF decreases. The combined diffusion ODF becomes
sharper as more signals from high q(b)-values are included (Fig. 3e).
Notably, the impulse response ODF and component ODF have both
positive and negative values, while their summation is guaranteed to
produce non-negative diffusion ODF.

Figure 4b displays the estimated q-space sampling density non-
uniformity correction factors at each shell for the Stanford, MGH-USC
HCP and WU-Minn-Ox HCP data using the proposed geometric method
(Fig. 4a). For all three datasets, the sampling density correction factors
for the q(b) = 0 sample (a single sample for the averaged b =0 images)
are relatively high, which scales up the non-DW signal and translates into
an appropriate constant term in the EAP.

The correction factors for non-zero b-values are monotonically
increasing, indicating that the signals from high q(b)-values are insuffi-
ciently sampled compared to low q(b)-values. The ratios between the
correction factors of the lowest and the highest non-zero g-values are:
2.17, 2.89 and 1.76 for the Stanford, MGH-USC HCP and WU-Minn-Ox
HCP data respectively. This means that the sampling density correction
operation only moderately scales the signals from high q(b)-values while
does not over-emphasize the noise in the low SNR measurements at high
q(b)-values. For the MGH-USC HCP data, the slope of the correction
factors for non-zero b-values decreases as the b-value increases (Fig. 4b
red curve). This is because the MGH-USC HCP protocol partially
compensated for the decreased sampling density at high b-values by
doubling the number of samples as b-value increases from 3,000 s/mm?
to 5,000 s/mm?, as well from 5,000 s/mm? to 10,000 s/mm?.

Figure 5 demonstrates the effects of g-space sampling density
correction on the EAP. For the crossing-fiber voxels (from CSO region,
Fig. 10 magenta dashed boxes), the 2D coronal cross sections through the
center of the 3D EAP (Fig. 5a, b, d, e, g, h), the 1D profiles along left-right
(Fig. 5¢, f, i red curves), superior-inferior (Fig. 5c, f, i blue curves) and
anterior-posterior (Fig. 5c¢, f, i green curves) directions from the EAP
center, and the 3D contours (Fig. 5j, negative values clipped to 0) at
different displacement distances are displayed. The EAP becomes sharper
after the sampling density correction (comparing Fig. 5j rows i, iii, v with
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rows ii, iv and vi at displacement distance longer than 0.2 of the
MDDy4ter) because the correction scales up high q(b)-value signals. The
Gibbs ringing present in the EAP, however, becomes more severe (Fig. 5
pink arrows and dashed circles). The increased intensity of the Gibbs
ringing after sampling density correction has the benefit of making the
ringing easier to identify (comparing Fig. 5f solid and dashed lines),
which assists operations to mitigate the effects of ringing, such as clip-
ping the EAP values beyond the first zero-crossing to 0 before computing
metrics and ODF from the EAP. Without sampling density correction, the
ringing is harder to identify (e.g. Fig. 5f solid lines) and obscures the
shape of EAP (e.g. Fig. 5j, rows iii, displacement distance larger than
0.4XMDDyater)-

Due to the different gnax values for the Stanford, MGH-USC HCP and
WU-Minn-Ox HCP datasets, the extents of the recovered EAP are
different, i.e. about 2/3 (Fig. 5a and b), 1/2 (Fig. 5d and e) and 1 of
MDDyater (Fig. 5g and h) respectively. Therefore, the displacement dis-
tance at which the 3D EAP contour is the sharpest is different, i.e.
0.6 XMDDyyater = 14.2 pm, 0.5XMDDyater = 8.1 pm, and
1 XMDDyater = 24.4 pm, for the Stanford (Fig. 5j, row ii), MGH-USC HCP
(Fig. 5j, row iv) and WU-Minn-Ox HCP data (Fig. 5j, row vi).

Additional EAPs from brain regions where the tissue microstructure is
more complex compared to the WM were recovered with g-space sam-
pling density correction. These EAPs were reconstructed in the polar
coordinates. For the MGH-USC HCP data, EAPs at 8 ym in ROIs that
contain parts of pre- and post-central gyrus, thalamus and brainstem are
displayed in Figure 6 (EAPs at 0-10 pm with 0.2 pm step are shown in
supplementary videos). These EAPs present the diffusion patterns and
map the complicated microstructure without imposing any model on the
signal. In the post-central gyrus, for example, the water molecules have a
high probability to diffuse in the direction radial to the cortical surface.
Interestingly, a portion of the water molecules also tend to diffuse in the
direction parallel to the cortical surface, resulting in crossing EAP ori-
entations (Fig. 6b magenta dashed boxes). The sharp EAP contours also
reveal multiple directional vectors of water diffusion in different
thalamic nuclei and within the basis pontis in the brainstem.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.neuroimage.2019.01.038

Figures 7 and 8 demonstrate two examples of metrics, i.e. P; (Fig. 7)
and r, (Fig. 8) that can be derived from the recovered EAP. P; represents
the mean probability of a water molecule within a voxel displacing to a
specific distance within the diffusion time used in the pulse sequence.
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Fig. 5. Reconstructed spin displacement
ensemble average propagator (EAP) with (b, e,
h, dashed lines in ¢, f, i, and rows ii, iv, vi in j)
and without (a, d, g, solid lines in ¢, f, i, and
rows i, iii, v in j) g-space sampling density
correction of crossing-fiber voxels (Fig. 10
magenta dashed boxes) from the Stanford (a-c,
row i and ii in j), MGH-USC HCP (d-f, rows iii
and iv in j) and WU-Minn-Ox HCP data (g-i,
rows v and vi in j). The 2D coronal cross sec-
tions through the center of the 3D EAP (a, b, d,
e, g, h), the 1D profiles along left-right (L-R,
red lines in ¢, f, i), superior-inferior (S-I, blue
lines in ¢, f, i) and anterior-posterior (A-P,
green lines in c, f, i) directions from the EAP
center, and the 3D contours (j, negative values
clipped to 0) at different displacement dis-

S
- i A
2D EAP cross-section REGHL
w/o density correction ; w/ density correction i 5
>
0.9 0.9 o
2
- 0.75 o7s 308
>
= O 0.6 0.6 Z06
O 1 3
‘E (7; 0.45 045 5 .
S s 03 0.3 }3-
e 0.2
[72) 0.15 015 N
©
0 0 c§ 0
o
0.15 015 ¥ Z
2XMDD, e 2XMDD 5t ——> 0
1 1 2 1
0.9 0.9 £
e
(&) o 0.75 075 208
n - z
S50 0.6 0.6 Zos
[ 0.45 045 3
T ©04
o 0.3 0.3 S
(O] o2
S (@) 0.15 015 SO
o
I 0 B fg i
<}
0.15 015 " Z
2xMDD, e 2xMDD e, —> o
1 1 o 1
0.9 0.9 5
X 2
(@) j 0.75 075 398
1 2
c 0.6 0.6 Z06
c@ 3
- = 0.45 045 3
S 0.
E. o 0.3 0.3 =
Q
- % 0.15 015 802
[
; 0 0 | g 0
10.15 015 =
2xMDD,5te 2xMDD e, —> o
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24.4 ym for the Stanford, MGH-USC HCP and
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The mean P; curve averaged from all WM voxels (Fig. 7f red, blue) is
narrower than the mean P; curves for the GM (Fig. 7f green) and cere-
brospinal fluid (CSF) in the ventricle (Fig. 7f black) due to the more
constrained water diffusion within the tightly packed axon bundles. At
different displacement distances, P, provides a new type of image
contrast based on the diffusion property of the tissue (Fig. 7 b-e). At zero
displacement distance, the Py map (Fig. 7b) resembles a T;-weighted
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image (Fig. 7h, correlation equal to 0.58). Since the probability of water
molecules in the WM and GM displacing to ~5.2 pm is similar (Fig. 7f
pink arrow), the contrast between WM and GM is diminished in the
P55y map (Fig. 7c). For a displacement distance slightly longer than
5.2 um, the P, for the GM becomes larger than the P, for the WM.
Therefore, the GM is much brighter than the WM in the P, map,
creating a strong GM-WM contrast. The CSF is the brightest in the P15y,
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Fig. 6. Spin displacement ensemble average propagators (EAPs) recovered at 8 pm (with g-space sampling density correction) from the pre- and post-central gyrus,
thalamus and brainstem regions of interest (ROIs, red rectangles in the inset images in b-d) from the MGH-USC HCP data overlaid on axial slices of fractional
anisotropy (FA) maps (windowed between [0, 1]) from diffusion tensor imaging (DTI) (b-d). The nearby voxels outside the gray matter, thalamus and brainstem
within the ROISs are on top of black background. The FA and the primary eigenvectors (V1) from DTI of the three ROIs are displayed in (a). DTI V1 is color coded based

on orientation (red: left-right, green: anterior-posterior, blue: superior-inferior)

map since only water molecules with very fast diffusion rate can diffuse
to such a long distance.

The r, index measures the displacement distance that the mean
probability decays to o of the maximum probability (i.e. Py), and hence
indicates the overall level of restriction within a voxel. As expected, WM
appears darker than the GM and CSF in the r, maps (Fig. 8a-f), revealing
the increased degree of restricted diffusion within WM.

The rp index denotes the longest displacement distance that the water
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molecules can diffuse. Within the CC, ry in the direction perpendicular to
the DTI V1 is different in different sub-regions (Fig. 8g and h). Specif-
ically, the ry is larger in the body of the CC (Fig. 8g green,
5.65 + 0.09 pm) compared to the anterior (Fig. 8g red, 5.55 + 0.15 pm)
and posterior part of the CC (Fig. 8g blue, 5.4 +0.15 pm). This corre-
sponds well to histological studies in the literature that show that larger
axon diameters are only found in the body of the CC and not in the genu
and splenium of the CC (Aboitiz et al., 1992).
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Fig. 7. Maps of the mean probability at 0 (b), 5.2 pm (c), 7 pm (d) and 15 pm (e) displacement distance on a representative axial slice, and the mean and standard
deviation of the mean probability (f, g) within 14 FreeSurfer regions of interest (ROIs) (a, listed along the x-axis in g) from the MGH-USC HCP data. The scatter plot of
the zero displacement probability versus the T;-weighted image intensity in the whole brain is showed with the correlation value (h).

The effects of g-space sampling density correction on the ODF are
demonstrated in Fig. 9. The component ODFs from each shell (Fig. 9
columns 1-6) and the combined ODF (Fig. 9 columns 7-8) reconstructed
with (Fig. 9, rows ii, iv, vi) and without (Fig. 9, rows i, iii, v) sampling
density correction for the Stanford (Fig. 9 rows i, ii), MGH-USC HCP
(Fig. 9 rows iii, iv), and WU-Minn-Ox HCP data (Fig. 9 rows v, vi) are
shown. The sampling density correction scales up the signals from high
q(b)-value signals (weights determined in Fig. 4b) such that the
component ODFs from high q(b)-value shell have higher contribution
(larger size, the size of the component ODF from b = 1000 s/mm? were
kept the same with and without the correction) to the combined ODF.
Therefore, the combined ODF becomes sharper (comparing Fig. 9, rows i,
iii, v with rows ii, iv, vi, column 7), with strengthened ringing obscuring
the shape of the ODF and/or leading to “bumps” in the ODF (Fig. 9 green
arrows) that might cause erroneous orientations to be used in the trac-
tography. Using the indirect approach with ringing removal (clipping
EAP values beyond the first zero crossing to 0), the ODF becomes much
cleaner as well as sharper (comparing Fig. 9 columns 7 and 8).

Figure 10 displays the ODF and fiber orientations estimated using
both model-based and model-free methods in the crossing fiber ROI from
the CSO region. The GDSI ODFs are sharper compared to the GQI ODFs
because the sampling density correction increases the contribution from
the high q(b)-value signals that contain high frequency information in
GDSI. Therefore, intra-voxel crossing fibers appear better delineated in
GDSI compared to GQI (more blue and green sticks in Fig. 10b, rows 1, 3,
4, column iv than in column iii). For the model-free methods, detection of
crossing fibers appears to be strongly dependent on the maximum b-
value. Both GQI and GDSI identify more secondary and tertiary fibers in
the MGH-USC HCP data with a maximum b-value of 10,000 s/mm?>
compared to the WU-Minn-Ox HCP data with a maximum b-value of

3,000 s/mm?. The model-based methods overall identify more secondary
and tertiary fibers compared to the model-free methods (more blue and
green sticks in Fig. 10b, rows 1, 3, 4, columns i and ii, than in columns iii
and iv, and supplementary simulation study).

The fiber crossing angles estimated by the model-based (BEDPOSTX
and CSD) and model-free (GDSI) methods follow distinct distributions as
depicted in Supplementary Figure 1 and Figure 11. The BEDPOSTX, CSD
and GDSI method identifies a secondary fiber in 91%, 84% and 59% and
a tertiary of fiber in 63%, 47% and 19% of all WM voxels in the MGH-
USC HCP data, and identifies a secondary fiber in 95%, 78% and 9%
and a tertiary of fiber in 70%, 26% and 0.7% of all WM voxels in the WU-
Minn-Ox HCP data. For BEDPOSTX and CSD, the fiber crossing angle
histograms show a peak ~60°, with an exception for the crossing angle
between the primary and secondary fibers from the MGH-USC data
(Fig. 11a, red curve, histogram peak shifted to ~30°). The fiber crossing
angle histograms from CSD also have a preference for ~90°. For GDSI,
the fiber crossing angle distribution resembles a half Gaussian curve
centered at 90°.

5. Discussion

Here we present a generalized DSI framework to recover the model-
free EAP from non-Cartesian diffusion data. Unlike conventional DSI,
GDSI does not require Cartesian g-space sampling and FFT-based
reconstruction. GDSI computes the EAP by multiplying the sampling
non-uniformity corrected g-space samples with a DFT matrix, and is
therefore flexible with the coordinate systems of both the g-space signals
and the EAP. We demonstrate various metrics, such as the zero
displacement probability, mean probability at a specific displacement
distance, and the mean displacement distance at a fraction of the
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Fig. 8. Maps of the displacement distance at 0.9 (a), 0.7 (b), 0.5 (c), 0.3 (d), and 0.1 (e) of the zero displacement probability (Py) on a representative axial slice, and
their mean within 14 FreeSurfer region of interests (ROIs) (Fig. 7a, listed along the x-axis in f) from the MGH-USC HCP data. The map of the displacement distance at
0 probability (ro, distance at first zero crossing) perpendicular to the primary eigenvector (V1) from diffusion tensor imaging (DTI) in the corpus callosum (CC) is
displayed on fractional anisotropy (FA) map (windowed between [0, 1]) from DTI on a representative sagittal slice. The mean and standard deviation of ry within the
five sub-regions of the CC (the anterior (red in g inset), mid-anterior (yellow in g inset), central (green in g inset), mid-posterior (cyan in g inset) and posterior (blue in
g inset)) are reported in (h). Only voxels with FA larger than 0.5 within the FreeSurfer CC ROI are included.

maximum probability, can be derived from multi-shell diffusion data
using our method to characterize tissue microstructure. Using the GDSI
framework, we also elucidate the contribution and combination of g-
space signals to the diffusion ODF by formulating the reconstruction as a
linear system, and compute the model-free diffusion ODF from the multi-
shell diffusion data.

The model-free EAP from GDSI is equivalent to the raw diffusion data,
but provides a more intuitive representation in the Fourier domain,
which more directly relates to the underlying diffusion patterns. For
example, the shape of the EAP can reflect the restriction and non-
Gaussianity of the diffusion process, which is useful for differentiating
different tissue types (Fig. 7) and abnormal tissues. The size of the EAP
(i.e. the width at the first zero-crossing) measures the longest displace-
ment distance a water molecule can transverse during the diffusion time,
which might reflect the trend of axon/nerve diameter (Fig. 8). This in-
formation provided by the EAP may be useful for microstructural imag-
ing. Since the EAP also provides the ODF (EAP's angular summarization)
for tractography purpose, the EAP potentially enables a way to integrate
the microstructural imaging and diffusion tractography for character-
izing microstructural properties associated with specific white matter
fiber bundles (Huber et al., 2018; Yeatman et al., 2012, 2018).

The displacement distance associated with the GDSI EAP is different
from the ground truth for two reasons. First, the narrow pulse assumption
(6«A), a condition of the Fourier relationship between the g-space sig-
nals and the EAP, cannot be met in practice. Therefore, the EAP describes
the displacement of a spin from the mean position during the first pulsed
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gradient to the mean position during the second pulsed gradient.
Consequently, the displacement distance is underestimated (Wedeen
et al., 2005; Mitra and Halperin, 1995). Second, truncating the g-space
before the signal decays to zero contaminates the EAP by convolving the
true EAP with a point spread function (PSF) after the Fourier transform.
The main lobe of the PSF blurs the EAP. The displacement distance is
therefore overestimated (Tian et al., 2016). Therefore, any interpretation
of displacement distance metrics derived from the EAP, such as ry, should
account for these approximations.

Fortunately, many approaches now exist to reduce the influence of
these two issues on the EAP. For example, the stronger gradient strength
provided by the HCP scanners (up to 300 mT/m from MGH-USC, and up
to 80 mT/m from WU-Minn-Ox) achieves higher maximum b-values with
shorter gradient durations, which not only brings the PGSE experiments
closer to the narrow pulse approximation but also helps to mitigate the
effects of g-space truncation. Alternatively, g-space truncation effects can
be mitigated by deconvolving the EAP with the PSF associated with a
specific g-space truncation (Canales-Rodriguez et al., 2010b) and
reducing the noise floor for diffusion signal at high b-values using the real
part rather than the magnitude of the signal (Eichner et al., 2015).

Our proposed EAP reconstruction method relies on solving the
Fourier transform using a matrix formalism, i.e. multiplying the gq-space
signals with a DFT matrix. This approach allows performing the Fourier
transform on signals acquired with any q-space sampling pattern, such as
multi-shell, and provides a more general form of DSI. Therefore, the
proposed GDSI method enables a more direct way to compare the DSI
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component ODF from the b=1,000s/mm? shell is kept the same with and without g-space sampling density correction. The combined ODF is normalized by

their maximum.

based approach with many other model-based methods, such as CSD, on
the same multi-shell data, without the confound of the different datasets
required for different methods (e.g. Cartesian sampling data for DSI
versus multi-shell sampling data for other model-based methods). The
crossing fiber detection of model-free methods was found strongly
dependent on the maximum b-value and less sensitive compared to the
model-based methods (Figs. 10 and 11), which provides a way to
determine the choice of model-free or model-based methods for different
datasets for tractography in practice. For example, the model-free
methods identify very few secondary and tertiary fibers for the WU-
Minn-Ox HCP data with a maximum b-value of 3,000s/mm? while
identify similar numbers of secondary and tertiary fibers compared to the
model-based methods for the MGH-USC HCP data with a maximum b-
value of 10,000 s/mm?. More interestingly, the distributions of the fiber
crossing angles identified by the model-free and model-based methods
were found to follow very different distributions in the WM on the same
multi-shell data (Fig. 11) (Catani et al., 2012).

Cartesian g-space samples acquired in DSI could also benefit from
GDSI's matrix formalism reconstruction. For example, the diffusion-
encoding directions must be rotated to account for subject motion
(Leemans and Jones, 2009) and gradient nonlinearity (Sotiropoulos
et al., 2013), in which case the resultant g-space samples might no longer
locate on a strict Cartesian grid. Errors will be introduced into the EAP if
performing an FFT of the shifted samples. The shifted g-space samples
could be interpolated back onto a Cartesian grid, but this requires extra
computation. Applying GDSI's matrix formalism EAP reconstruction
method directly to the shifted samples offers a more accurate and direct
computation of the EAP.

DFT matrix reconstruction also allows the flexibility to recover the
EAP at an arbitrary set of displacement directions and distances, e.g. on a
Cartesian grid or on radial lines along multiple directions. Recovering the
EAP on radial lines is useful for visualizing and analyzing the EAP. To the
first point, a 3D EAP can be decomposed as a set of spherical functions at
different displacement distances, which can be displayed using the
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4) and WU-Minn-Ox HCP data (b, rows 5, 6). The primary eigenvectors (V1) from diffusion tensor imaging (DTI) are also depicted (a). All reconstruction results are
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number of the secondary fibers, tertiary fibers and tertiary fibers, respectively.

diffusion ODF visualization tools (Fig. 6 and supplementary videos). To
the second point, there is no need to resample the EAP recovered from
FFT-based reconstruction onto radial lines (as performed in DSI) to
compute the diffusion ODF and many other orientation-specific EAP
metrics (Figs. 7 and 8). Finally, along each radial line the EAP values
beyond the first zero-crossing can be clipped to O to mitigate the Gibbs
ringing, which results from the Fourier transform of the truncated g-
space. The ringing can otherwise obscure the ODF shape and lead to
erroneous fiber orientations (Figs. 3 and 4) (Paquette et al., 2016; Tian
et al., 2016). In DSI, the negative lobes of the ringing present in the EAP
are clipped to O to mitigate ringing.

A valid DFT matrix reconstruction on non-Cartesian, such as multi-
shell, g-space sample requires uniform and sufficient gq-space sampling
density. However, the g-space sampling density is usually non-uniform.
In multi-shell sampling, it is common to slightly under-sample the high
q(b)-value regions (Fig. 4b). A sampling density correction is therefore
needed to scale up the high q(b)-value signals, which contain high fre-
quency information of the diffusion pattern. Here, we propose a fast
geometrical method to estimate the q-space density correction factor that
is similar to that used for image reconstruction of radial k-space samples
(Pauly, 2005). This method makes an assumption that the g-space points
are uniformly distributed on each shell, which is true for most multi-shell
diffusion data, because of the requirement for uniform angular resolu-
tion. Advanced numerical methods such as using a 3D Voronoi diagram
(Rasche et al., 1999) can be adopted for other q-space sampling patterns.
The sampling density requirements for the multi-shell g-space sampling
can be prescribed between shells (Appendix B Eq. (B2)) and within in-
dividual shell (Appendix B Eq. (B6)). These requirements have to be
satisfied to avoid aliasing artifacts in the diffusion propagator recon-
structed using GDSI (Tian et al., 2016; Tefera et al., 2013). For the
multi-shell data used in this study, including those from the HCP, the
sampling density requirements are satisfied. For under-sampled multi--
shell data, a model-based approach or g-space compressed sensing
techniques (Bilgic et al., 2012; Paquette et al., 2015) should be adopted.

In GDSI's matrix formalism, the mapping from the g-space signals to
the diffusion ODF can be formulated as a linear system, which provides
intuition on the diffusion ODF reconstruction. Specifically, the diffusion
ODF value along a specific direction is a linear weighted summation of all
the g-space samples, with the linear weights determined by the g-space
location of the samples (Eq. (9) and Fig. 1). In the special case of the
single-shell sampling, GDSI is consistent with QBI's use of the Funk-
Radon transform that approximates the diffusion ODF value along a
specific direction as the summation of the g-space signals along the
orthogonal equator (Fig. 1e). Further, GDSI is equivalent to GQI in terms
of ODF reconstruction if GQI's input signals are pre-compensated to ac-
count for g-space sampling non-uniformity. The difference of the two
methods is that GQI solves the ODF analytically while GDSI solves the
ODF using a matrix formalism. Compared to GQI, GDSI has the additional
freedom to modify the EAP before ODF calculation (e.g. clipping the
negative lobes of the ringing to 0 to mitigate ringing), and select the
starting point (0 in GQI) (Paquette et al.,, 2016) and the power of
displacement distance (0 and 2 in GQI) in the EAP integration for
calculating the ODF, in addition to the benefit of recovering the EAP.
GDSI unifies DSI, QBI and GQI in theory and can be used as a replacement
in practice. GDSI's linear system formalism also allows decomposition of
a diffusion ODF into a series of component ODFs from each g-space
sampling point, or each g-space shell (Eq. (10), Figs. 3 and 9). This
decomposition is potentially useful for protocol optimization.

In terms of computation, the matrix based reconstruction requires N/
log(M) (N is the number of g-space signals, M is the number of EAP
values) more multiplications and additions compared to the FFT-based
reconstruction, but saves the computations of gridding multi-shell sam-
ples to the Cartesian grid and/or interpolating the EAP recovered on the
Cartesian grid to radial lines to compute the ODF. N is relatively small for
the g-space signals (~102), in contrast to the number of k-space signals in
a zero-padded 2D matrix (~104). Further, the simple computation of
multiplication and addition in the matrix based reconstruction can be
easily accelerated via parallel computing and the use of graphics
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processing units.
6. Summary

This study presents a generalized DSI framework named GDSI to
recover the model-free spin displacement EAP from multi-shell diffusion
MRI data. The proposed GDSI method involves correcting for the non-
uniform g-space sampling density and performing the Fourier trans-
form using a DFT matrix. GDSI is shown to produce the EAP and ODF that
are in good agreement with those reconstructed from a full DSI acquisi-
tion, and to be broadly applicable to different types of multi-shell data
including those from the HCP. The maps of EAP metrics such as Py and ry,
are demonstrated as additional means to characterize the diffusion pat-
terns in different tissue types. GDSI also enables fiber orientations esti-
mated from both the model-free and model-based methods on the same
multi-shell data. Lastly, GDSI elucidates the contribution and combina-
tion of g-space samples to the diffusion ODF and relationship between
various diffusion ODF reconstruction methods. In conclusion, our study
provides a generalized DSI framework for recovering the EAP and ODF
from Cartesian and multi-shell diffusion data, which contributes to the
theoretical understanding of the DSI methodology, and flexibility of
diffusion MRI data analysis for studying microstructure and connectivity

Appendix A

Neurolmage 189 (2019) 497-515

in the human brain.
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The dephasing term ® of a spin is proportional to the scalar product between the applied gradient wave vector ¢ (=qv) and the relative spin

displacement r (=ru) as:

O =2nqr =2n-qv-ru,

where unit vectors v and u are directions of g and r.
q can be expressed in terms of b for pulsed gradient waveform as:

R N A
1= 27780 = 24 A2

(A1)

(A2)

where A is the diffusion time, the interval between the two diffusion encoding gradient pulses during which spins are allowed to displace, and § is the
diffusion-encoding gradient strength. y is the gyromagnetic ratio (y/27 = 42.58 MHz/T). g is the diffusion-encoding gradient strength.
Any arbitrary displacement distance r can be expressed as a ratio 1 of the mean displacement distance of free water (MDDyyater) at 37 °C as:

r = 24-MDD,,yer.

(A3)

For a specific diffusion pulse sequence with given A and 6, MDD, is a constant number, which can be calculated using Einstein's equation

(Einstein, 1905):

B
MDD = 6D<A f§>7

(A4)

where D is the diffusion rate and A-5/3 is the effective diffusion time. MDDy ater is equal to 1 [ 6Dyqter <A — %), with the diffusion rate of free water at

37 °C Dyater = 2.5%x 1073 mm?/s.

Substituting Equations (A2)-(A4) into Equation (A1) provides an expression for ® in terms of the b-value, the b-vector and a ratio to the MDD,,,qr:

1
S =27 —
”27r

b o
A év : l\/eDwam- (A - g) u= V 6Dwamrbv Al
T3

(AS5)

Since the b-value (b) and the b-vector (v) are commonly reported in most diffusion pulse sequences, it is more convenient to use Equation (A5) rather

than Equation (A1).

Appendix B

The field of view determined by the q-space sampling density Aq should be larger than the extent of the ensemble average propagator (EAP) to avoid

aliasing, as:
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1
— >2-MDD, (B1)
Aq

where 2 - MDD (mean displacement distance given in Eq. (A4)) is used to approximate the size of the EAP (Tian et al., 2016). The MDD of free water
(MDDyy4ater) can be used to provide an upper bound of the EAP size.

For the multi-shell g-space sampling, the sampling density should be sufficient between shells as well as within individual shell. For two arbitrary
neighboring shells with b-values of b; and by (b2 > b1), substituting Equations (A2) and (A4) into Equation (B1) gives:

VbaD — \/biD < \/lg (B2)

where D is the diffusion coefficient. For an approximate higher bound of the apparent diffusion coefficient in the in vivo human brain of
D =1.7x10"3mm?/s (the apparent diffusion coefficient along the primary fiber orientation in the corpus callosum measured by DTI (Pierpaoli et al.,
1996; Tian et al., 2016), the b-value requirement specified in Equation (B2) is simplified as:

Vb — /by <31, (B3)

where the unit of b; and b, is s/mm>.
On a specific shell with g-value g (b-value b) and N uniformly distributed samples, each sample has a solid angle of A = 4z/N. The solid angle of a
sample is also geometrically (Figure Appendix B) determined as:

A =2x(1 — cosh). (B4)
The distance between any two samples (ac = bd in Figure Appendix B) on the shell is given by:
Ag =2 - gsind. (B5)

Substituting Equations (A2), (A4), (B4) and (B5) into Equation (B1) gives:

bD < ———. B6
=96 o
For D=1.7 x 10~3mm?/s and assuming %z is negligible (since 1 > =), the number of samples N on a shell should satisfy:
b
N> — B
260 (B7)

where b-value has a unit of s/mm?.

The diffusion coefficient D in Equations (B2) and (B6) should adapt to different applications accordingly. For example, the apparent diffusion
coefficient is as high as ~2.5 x 10~ mm?/s for some types of tumor (Yamasaki et al., 2005) while about 10x lower in the ex vivo brain tissue compared
to in the in vivo brain (Tian et al., 2016).

'sampling
location

-

c

Fig. Appendix B. A 2D illustration of a q-space sampling shell of g-value g. Radial lines ob and od define the cone associated with the q-space sample c. The distance
between two samples (ac) is equal to the distance bd (=2 - gsind).

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2019.01.038.
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